What's the best way to analyze vast amounts of feedback?
.png)
Before you start, it's essential to understand what your goal is and the potential benefits: CX. The primary benefit is the improvement of the overall customer experience. It should go without saying that excellent customer experience improves brand loyalty and decreases churn. Being able to analyze across multiple customer touchpoints is the first step to understanding the customer experience as a journey rather than one of the individual interactions. The analysis is the first step to understand the customer as more than just data. Product and service improvement: Understanding what customers think of products and services is an evident gauge of how useful feedback can be. Effective feedback analysis goes further. It can help you understand the relative importance of different features and how they interact with the product or service as a whole. It also enables you to see which products or attributes aren't relevant, and even which ones customers use to compare you to competitors. Net Promoter Score (NPS) improvement: Most will know that NPS is the single most popular customer benchmarking metrics used today. NPS surveys segregate customers into Promoters, Passives, and Detractors according to their feelings to your brand. If 50% of customers surveyed are Promoters while 40% are Detractors, your NPS is 50-40=10. A high NPS needs you to focus on far more than just a single transaction built on the entire brand experience. This means turning people into Promoters by accounting for every kind of contact. You can only do this by understanding all your customer feedback. Top-line business growth: Although organic growth is important, every CEO wants to increase its cross-selling and upselling rates. Research from Gartner shows that collecting feedback can do this by 15% to 20%. Better customer experience also leads to lower churn, lower retention spends, and higher customer lifetime value. All these benefits are described in our blog The power of 360-degree customer feedback analysis.
There are two principal drivers behind deciding to find feedback analysis solutions:
Before you begin to draw up your plan to develop an analytics solution, you will start considering who will be building and running it. Many will choose to outsource the entire process though others will try to create something tailored for their organization. Before you start, you should establish a number of critical criteria which will help communicate the vision internally as well as drill down into what needs to be done: How "core" will analytics be? Analyzing a large dataset should be approached with a clear strategic vision and an awareness of all risks involved as well as the planned benefits. There is a tendency to regard analytics as a back end or support function whereas for many organizations it can equally be considered as an integral part of the front end strategy. How much will this cost? At some point, the strategy will rely on data specialists, either internally or externally. There has been a severe shortage of data scientists in the US and Western Europe for the past few years, which makes it challenging to keep good people. Talent doesn't come cheap. Neither does experience. How quickly will we need this? Building a team up yourself takes time, and constructing your analytics tools will take extra time on top of this. What skills do we need? Putting the right team together depends on the software that needs development. It also depends on the technology stack in use, how the new application or platform is going to interact and integrate with that stack, and the skills you've already got on-board. What is the risk? When software and data are involved, the most significant risks include the potential theft of data and failing to comply with regulatory requirements (such as GDPR in Europe and PCI DSS). Quality control and data security will also be factors you will need to take into account here. Balancing control vs. innovation. Generally speaking, external agencies can be more efficient and quicker as they are less likely to be slowed down by politics or processes. They can move faster and innovate quicker too. You trade all this for more control and ownership. What culture do we have? It is necessary to think before the project about the culture in your organization. At a macro level, companies that aren't customer-centric can find it hard to gather support behind efforts to understand customers better. Secondly, company attitudes to data-led decision making vary. Who are the end-users for the data? Marketing analyst? The CFO? Who will be running queries, and what relationship will they have to the user?
Once you have decided to improve your customer feedback analysis, there are three choices to be made.
Many firms currently adopt a partial outsourcing strategy, whereby baseline, operational, analytical activities such as query and reporting, multidimensional data analysis, and OLAP are outsourced. In contrast, the advanced descriptive and predictive analytical skills are developed and managed in house. However, there is no "right" way to go forward and much depends on your organization context and desired outcome, so below, we will outline the pros and cons of each.
This would mean giving the project and analysis to a third party to create and operate.
Analyzing multi-language customer feedback in large volume from different sources is a complex process. With an AI-based technology and years of experience, Wonderflow is helping global brands to become customer-centric.
This usually means hiring your staff to build a solution from scratch.
A SaaS (software as a service) solution is a service developed by another company that your organization can buy. There are SaaS solutions that focus on getting actionable insights from customer feedback.
It's easy to think that understanding customer feedback is a closed-loop task with a specific beginning and end. This is true in project management terms, but at Wonderflow, we always understand that the success of customer feedback and analysis projects are dependent on company culture and can often create change in culture too. Usually, it's the first step in becoming customer-centric and developing processes and systems designed with the customer journey in mind. Because we encourage open access to our analytics in the organization (training for the Wonderboard is very simple), data culture is influential too. With the right analysis, it's easy to understand how changes in customer experience can impact individual as well as company goals.